Install the dependencies in your local environment.
pip install -r requirements.txt
train:model.py
import sys
import joblib
from lightfm import LightFM
from lightfm.datasets import fetch_movielens
if __name__ == "__main__":
no_components = int(sys.argv[1])
print(f"Number of components is set to {no_components}")
# Load the MovieLens 100k dataset. Only five
# star ratings are treated as positive.
data = fetch_movielens(min_rating=5.0)
# Instantiate and train the model
model = LightFM(no_components=no_components, loss='warp')
model.fit(data['train'], epochs=30, num_threads=2)
# Save the model
joblib.dump(model, "model.joblib")
src/func:main.py
import joblib
import numpy as np
from lightfm import LightFM
# Load model once
model: LightFM = joblib.load("/model/files/model.joblib")
# Get all item ids
item_ids = np.arange(0, 1682)
def get_top_rank_item(user_id):
# Calculate scores per item id
y = model.predict(user_ids=[user_id], item_ids=item_ids)
# Pick top 3
top_3 = y.argsort()[:-4:-1]
# Return {'top_1': ..., 'top_2': ..., 'top_3': ...}
return dict([(f"top_{i + 1}", item_id) for i, item_id in enumerate(top_3)])
We train and upload our model with 5 components as movie_rec:v1
python train_model.py 5
hs apply -f serving.yaml
Upload Model B
Next, we train and upload a new version of our original model with 20 components as movie_rec:v2
python train_model.py 20
hs apply -f serving.yaml
We can check that we have multiple versions of our model by running:
hs model list
Create an Application
To create an A/B deployment we need to create an Application with a single execution stage consisting of two model variants. These model variants are our Model A and Model B correspondingly.
The following code will create such an application: