Hydrosphere.io
GithubPython SDKContact UsSlack Community
master
master
  • Hydrosphere
  • 🌊About Hydrosphere
    • Overview
    • Concepts
    • Platform Architecture
      • Serving
      • Monitoring
      • Interpretability
    • Key Features
      • Model Registry
      • Inference Pipelines
      • A/B Model Deployments
      • Traffic Shadowing
      • Language-Agnostic
      • Automatic Outlier Detection
      • Data Drift Report
      • Monitoring Dashboard
      • Alerts
      • Prediction Explanation
      • Data Projection
      • Kubeflow Components
      • AWS Sagemaker
  • 🏄Quickstart
    • Installation
      • CLI
      • Python SDK
      • Configuring Helm charts
    • Getting Started
    • Tutorials
      • A/B Analysis for a Recommendation Model
      • Using Deployment Configurations
      • Train & Deploy Census Income Classification Model
      • Monitoring Anomalies with a Custom Metric
      • Monitoring External Models
    • How-To
      • Invoke applications
      • Write definitions
      • Develop runtimes
      • Use private pip repositories
  • 💧Resources
    • Troubleshooting
    • Reference
      • Libraries
      • Runtimes
    • Contribution
      • Contributing Pull Requests
  • Advanced
    • AWS infrastructure
Powered by GitBook
On this page

Was this helpful?

Export as PDF
  1. About Hydrosphere
  2. Key Features

Model Registry

Hydrosphere has an internal Model Registry as centralized storage for Model Versions. When you build a Dockerized model and upload it to Hydrosphere or create new model versions, they get uploaded/stored to the configured model registry in the form of images. This organizes and simplifies model management across the platform and production lifecycle.

PreviousKey FeaturesNextInference Pipelines

Last updated 3 years ago

Was this helpful?

🌊